skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Muse, Jonathan A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper presents a fault-tolerant control method for a quadrotor UAV using solely on-board sensors. A simultaneous localization and mapping (SLAM) system is developed utilizing a laser rangefinder and an open source SLAM algorithm called GMapping. This system allows for mapping of the surrounding environment as well as localizing the position of the quadrotor, enabling real-time position control. However, the SLAM system using the laser rangefinder may fail in certain degenerate environment like featureless tunnels or straight hallways. In order to compensate for possible faults in the SLAM measurements, a fault detection and fault-tolerant control method is developed. An observer is designed to estimate the translational velocity of the quadrotor using SLAM position measurements. The fault detection residual is defined as the deviation between this SLAM-based velocity estimate and another velocity estimate generated by an optical flow algorithm utilizing measurements provided by a downward facing camera. Real-time experimental results have shown the effectiveness of the fault-tolerant control algorithm. 
    more » « less